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Abstract. With the recent dramatic increase in electronic access to documents, text categorization—the task
of assigning topics to a given document—has moved to the center of the information sciences and knowledge
management. This article uses the structure that is present in the semantic space of topics in order to improve
performance in text categorization: according to their meaning, topics can be grouped together into “meta-topics”,
e.g., gold, silver, and copper are all metals. The proposed architecture matches the hierarchical structure of the
topic space, as opposed to a flat model that ignores the structure. It accommodates both single and multiple
topic assignments for each document. Its probabilistic interpretation allows its predictions to be combined in a
principled way with information from other sources. The first level of the architecture predicts the probabilities
of the meta-topic groups. This allows the individual models for each topic on the second level to focus on finer
discriminations within the group. Evaluating the performance of a two-level implementation on the Reuters-22173
testbed of newswire articles shows the most significant improvement for rare classes.

Keywords: information retrieval, text mining, topic spotting, text categorization, knowledge management, prob-
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1. Introduction

The goal of text categorization is to assign documents to one or more predefined subject
categories. This goal is central to information access tasks such as spotting topics, routing
documents, assigning subject headings, and for organizing documents into hierarchical
catalogs or directory-like structures.

Methods for text categorization differ in the form of the classifier, the technique for
training, and the representation of the documents. However, most approaches treat the
categorization problem as a set ofK independent binary classification tasks, one for each
category, where the information used to train each classifier consists of the set of positive
and negative example documents for that class. Our baseline results and comparative results
from the literature (Yang 1999) show that the best categorization methods differ only slightly
in accuracy: It has become very difficult to improve performance significantly when using
similar representation of the topics.
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This article exploits the internal structure of the categories in order to improve text
categorization performance over baseline models that ignore category structure. The cate-
gorization problem is decomposed into subtasks based on acategory hierarchy.Problem
decomposition is widely applied to reduce a larger problem into several smaller, hopefully
easier, problems. The idea very naturally applies to classification with hierarchical structure
in the classes, ranging from personal e-mail folders to Yahoo!-like catalogs of the Web. We
implement the model as a hierarchical neural network.

First, we provide the methodological background. Then we explain the architecture and
parameter estimation (or training) of the hierarchical neural network. Next we describe
several approaches to represent the documents (input space) and discuss their advantages
and disadvantages. After showing the basic results of the hierarchical models compared
to flat baseline models, we present a few in-depth illustrations of the superior performance
of the hierarchical network. The final section concludes with a summary and outlook to
further research.

2. Framework

2.1. A Probabilistic Approach

In text categorization, each documentd is represented throughx(d), the input vector, and
has an associatedK -dimensional output vector whose dimensions correspond to a given,
fixed set ofK possible categories or topics. The target value for a topic is unity if the
document has been assigned that topic, and zero otherwise. The goal of text categorization
is to obtain a decision rule. This rule is extracted from a training set consisting ofN
documents with correct assignments for each category. The decision rule, when applied
to a new document (presented to the classifier in the same representation as the training
documents), predicts for each of theK topics its presence or absence. For example, rule
learning methods, such as Swap-1 (Apte et al. 1994) and Ripper (Cohen and Singer 1996)
strive to derive sets of simple rules that best separate documents based on topic assignment.
Our own focus is on methods that are statistically motivated and can be interpreted in a
probabilistic framework.

In particular, we assume a loss functionLk(i, j ). It describes the cost of assigning the
valuei instead ofj to thekth output variable,tk. With these definitions, the task corresponds
to minimizing the total expected loss:∑

k

∑
j

Lk(i, j ) P(tk = j | x). (1)

The individual losses are weighted with the probability of the outputtk taking the valuej
given the inputx), P(tk = j | x). The inner sum extends over the outcomesj (for thekth
output), the outer sum over the outputsk. Since there are no interactions between the top-
ics, the overall sum is minimized when each term is minimized. This yields the usual case
where each output variabletk is treated separately. For each topic, the following expression
is minimized:∑

j

Lk(i, j ) P(tk = j | x).
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In addition to this separation of the classes, many problems have binary decisions,i, j ∈
{0, 1}. Furthermore, assuming no cost for correct classification,L(0, 0) = L(1, 1) = 0,
and unit cost for both Type I and Type II misclassification,L(1, 0) = L(0, 1) = 1, then the
optimal decision rule assignstk = 1 if

P(tk = 1 | x) > P(tk = 0 | x). (2)

Details on statistical decision theoretic can be found in Berger (1985).
Equation (2) shows that the key quantity is the probabilityP(tk | x). It can be estimated

in several conceptually different approaches. The first approach, discussed in detail in
Section 4.3.1, frames the problem as function approximation for the posterior probability
P: P(tk | x) = E[tk | x]. E[·] denotes the expected value. It depends on the inputx and
can, for example, be expressed as a nonlinear neural network, as explained in Section 4.3.2.
The second approach is indirect. It begins by estimating the probability of an input vector
for each class,P(x | tk = 1). Bayes rule is then used to flip the conditioning to obtain
P(tk = 1 | x) and the decision rule, again assuming unit cost for misclassification, yields

P(x | tk = 1)P(tk = 1) > P(x | tk = 0)P(tk = 0)

whereP(tk = 1) is the unconditional probability of classtk. For high-dimensional input
spaces, the indirect approach tends to give inferior results in comparison to the direct ap-
proach due to the problems that arise from combining often poorly approximated individual
densities. A third approach does not try to give probabilistic estimates but focuses on the
boundaries between the classes. For separating hyperplanes, this simplifies to the Fisher
linear discriminant, as well as the iteratively estimated perceptron (Hertz et al. 1991, Haykin
1998). Recent approaches include support vector machines that are based on selecting a
relevant subset of patterns in high-dimensional spaces, and large margin classifiers that
find class boundaries that maximize the distance between classes (Vapnik 1998). Excellent
books on classification are Cherkassky and Mulier (1998), Kennedy et al. (1998), and Duda
et al. (1999).

2.2. Related Work

Some of the early work in information retrieval (Rocchio 1971), although originally pro-
posed for relevance feedback, can be re-interpreted as a density estimation method. The
Rocchio method treats the average of the feature vectors that represent the documents as-
signed to a specific topic as a prototype of that topic. Distances from the prototype express
the likelihood that a new document belongs to the topic. If a Euclidean metric is chosen, the
underlying data generating process models the noise with spherical Gaussians. This method
is inappropriate when the distribution of documents for a given topic is very different from
the assumed Gaussian. For example, a term with two distinct meanings is not represented
well by an average of these two distinct samples.

On the Reuters-22173 corpus, Lewis and Ringuette (1994) contrasted “naive Bayes”
classification with “Classification and Regression Trees” (CART) (Breiman et al. 1984).
Wiener et al. (1995) compared logistic regression with nonlinear neural networks. On a
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different corpus, Schuetze et al. (1995) compared several classification methods (including
neural networks and logistic regression) on several reasonable document representations
that included the two representations used here (described in Section 4.4). The bottom line
of these experiments on document routing is: a neural network implementation of logistic
regression, as used here, outperforms the Rocchio approach.

A few text categorization methods directly minimize the joint loss given by Eq. (1). For
example, Yang and Chute (1992) propose a least squares approach to solve the simultaneous
regression problemE(t | x). This idea is developed further in Yang and Chute (1994).
Taking also another approach, Yang (1994) frames the problem ask nearest neighbor
classification and simultaneously estimatesE(tk | x) for all k. This approach does not in-
clude constraints on the output variablest and is primarily a computationally efficient way
for solving theK independent problems.

It has been noted that category labels are typically not flat but exhibit hierarchical struc-
ture. The hierarchy used here was first proposed in Wiener et al. (1995). In other work,
Dagan et al. (1996) use the latent hierarchical structure to improve cross-classification per-
formance, and Koller and Sahami (1997) focus on word selection for classifiers based on
binary inputs (presence or absence of each word).

A hierarchical classifier for documents that contain exactly one topic has been developed
by D’Alessio et al. (1998). It requires hard assignments at each branch. To end up at the
right leaf, every decisions in the hierarchy has to be accurate. Wiener (1995) discusses a
method for improving classification by exploiting hierarchical structure. We here provide
a probabilistic framework that allows several topics to be present in a given document.

3. Data Set

As a test bed for our categorization experiments we used the Reuters-22173 corpus of
financial news stories from 1987, a standard evaluation data set in the text categorization
literature.1 While there are 22,173 full news stories total in the corpus, different sets of
researchers have used somewhat different subsets for both training and evaluation. In par-
ticular, Lewis’ original experiments with the corpus (Lewis 1992) used all of the documents,
while later work by other authors used subsets consisting of a little less than half of the
documents (Apte et al. 1994, Wiener et al. 1995, Cohen and Singer 1996). The subset
chosen here (identical to Wiener et al. (1995)) has 9610 documents in the training set and
3662 in the test set. This is the result of selecting those topics that occur at least twice in
the training set (and any number of times including zero in the test set), and all documents
that have at least one of these topics assigned.

In more detail, there are 92 topics that occur at least twice in the training set. The frequency
of the topics varies greatly. The most frequent topic is assigned to about a third of the
documents. Documents may be assigned multiple topics. The maximum number of topics
assigned to a document in the corpus was twelve. The average number of topics assigned
is 1.24. This small value of this mean can be traced back to the fact that the two highest
frequent topics (earningsandacquisitions) tend to occur by themselves. [To clarify whether
a word denotes an input term, a topic, or a meta-topic, we use the following typographical
convention: A term or word from the document is typeset in teletype. A
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topic, generically called class and corresponding to the leaf of a tree is typeset in bold.
A META-TOPIC, GENERICALLY CALLED GROUP AND CORRESPONDING TO A NODE IS TYPESET

IN SMALL CAPS.]
While no explicit hierarchical structure was provided with the distribution of the data, an

exploratory cluster analysis suggested an implicit hierarchical structure. In particular, the
clustering revealed that when topics do co-occur, they tend to co-occur with other topics
falling under the same meta-topic. Based on the cluster analysis, we manually grouped
the topics into the following meta-topics:AGRICULTURE, ENERGY, FOREIGN EXCHANGE,
METALS, and a fifth group for the remaining topics. For brevity, we call itGOVERNMENT,
but do not report any results on this meta-topic it here. The Appendix lists all the topics
and their assignments.2

4. The Model

Performance on a learning task can often be improved by decomposing the task into a set
of smaller subtasks, each one easier than the whole, see, e.g., Russell and Norvig (1995),
and Nilsson (1998). Our analysis of earlier categorization experiments suggested that such
a decomposition could potentially be advantageous for topic spotting. This section first
motivates and describes our hierarchical model, then discusses the specific implementation
in terms of a neural network, and ends by describing the document representation.

4.1. Motivation

An analysis of the types of errors typically made by flat (non-hierarchical) models showed
that a large portion of the high scoringnon-relevant documents were on topics semantically
related to the actually assigned topic. These false-positive stories used vocabulary related to
the topic, but only incidentally. In order to predict the Reuters topics correctly, fine-grained
distinctions between incidental and actual topics are essential.

For example, while the termgold is a good predictor for the topicgold, gold also tends
to appear incidentally in documents about other precious metals, leading to false positive
predictions within the group. In contrast,gold appears much less frequently in other
groups, such as agricultural or energy stories. A hierarchical structure provides the high
resolution within a group where it is needed, but drops to a more coarse resolution between
groups where confusion is unlikely (and too high a resolution might lead to overfitting).

Using a hierarchical category structure allows the decomposition of the problem: first,
determine the general topic group, then within that group, distinguish among topics. In the
experiments with the Reuters data reported here we use a single level of hierarchy only.
However, this type of decomposition can be generalized to any number of levels.

4.2. Hierarchical Model

The key quantity in Eq. (2) isP(tk | x), the probability that topick is present given the
input x. When constructing the hierarchy, we assume that eachtk appears exactly once,
i.e., each topic is assigned to one and only one meta-topic. This mutually exclusive and
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Figure 1. Architecture of the hierarchical architecture. Inputs are at the bottom, outputs on the top. Rectangular
boxes with inputs and outputs indicate sets of hidden units. The meta-topic network on the left learnsP(mi | x)
as function of its inputx. The networks on the right specialize in predicting the topic given the meta-topic. The
inputs can be different from the global inputs into the meta-topic networks, as discussion in Section 4.4.

exhaustive assumption allows us to write

P(tk | x) = P(tk | mi , x)P(mi | x)

wheremi denotes meta-topici that includes topick.
We separately estimateP(tk |mi , x) andP(mi | x) and take the product as an estimate of

the probabilitytk. Note P(mi | x) acts as a gating quantity which determines the influence
of the separately trained local modelsP(tk |mi , x) on the overall computation of the class
probability. We refer to the model formi as the meta-topic model, and the local models as
topic models.

We implemented the decomposition outlined above using the architecture shown in
figure 1. The component on the left is a classifier estimated on all the training data that
learns to predict the probabilities of each of the five meta-topics for a given document that
is presented at the input. A meta-topic is defined to be present if one or more of the topics
it contains is present. The remainder on the right is a set of five classifier groups, one for
each meta-topic. Each group consists of a separate classifier for each topic in that group,
trained only on the documents of the corpus that contain the meta-topic for that group.
For example, thewheat classifier is trained only on documents with at least one topic in
theAGRICULTURE group. The wheat-classifiers can thus focus on the subtask of separating
wheat documents from other agriculture documents, rather than the entire task of separating
wheat documents from all other documents as a flat architecture would require.

To compute topic predictions for a given document using this hierarchical approach, we
present the document to each of the topic classifiers as well as to the meta-topic classifier.
Note that different representations of the document can be chosen as inputs into each
classifier, see Section 4.4. The outputs of the individual topic classifiers are then multiplied
by the output of the corresponding meta-topic classifier to produce final topic estimates. For
example, the output of thewheatclassifier is multiplied by the output of theAGRICULTURE
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meta-topic classifier. The role of the meta-topic classifier is to “turn on” each classifier
group to the degree the incoming document is judged to be relevant for the corresponding
meta-topic. If, for instance, an incoming document is about precious metals but not foreign
exchange, the meta-topic classifier will “shut off” the foreign exchange classifiers because
their predictions are neither needed nor meaningful—the foreign exchange classifiers were
not trained on metal documents.

4.3. Implementation

We write the hierarchical approach as a neural network. Section 4.3.1 briefly reviews the
framework of neural networks for classification in relation to standard logistic regression.
Section 4.3.2 suggests several architectures for text classification, outlines the dimensions
of variation, and justifies the architecture we chose. Background references for this section
include the excellent book by Bishop (1996), and, emphasizing the statistical perspective
on neural networks, Rumelhart et al. (1996) and Cherkassky and Mulier (1998). The code
used for the experiemnts was written in MATLAB.

4.3.1. Cost or Objective Function, and Search or Parameter Estimation.A neural net-
work implements a functional mapping from an input or feature vectorx to an outputy,
x→ y. In the trivial case of direct connections between input and output, this architecture
is identical tolinear regressionif the output is linear, and identical tologistic regressionif
the output maps the real axis onto(0, 1) through

y = 1

2
(tanh(ξ)+ 1) (3)

whereξ is a linear combination of the inputs.3

Neural networks are trained by gradient descent on a cost function. This cost function
can be interpreted as the negative logarithm of the likelihood of the data given the model.

Classification tasks can be classified into 1-of-K andk-of-K tasks. 1-of-K tasks can be
viewed as competition. This is not the case here, since a document can havek = 1, 2, . . .
meta-topics assigned to it. Similarly, the task for each meta-topic classifier is alsok-of-K
learning, since given more than one topic from the subset of topics corresponding to the
meta-topic may be present a document.

k-of-K classifications are equivalent toK independent 1-of-2 classifications. For each
of these 1-of-2 classifications, the appropriate cost function is given by the “cross-entropy”
(McCullagh and Nelder 1989, Rumelhart et al., 1996, Bishop 1996)

−
∑

d

{
td
k log yd

k +
(
1− td

k

)
log (1− yk(xd))

}
.

In this double sum,d extends over all documents. For each document,k denotes one specific
class,y denotes the prediction, andt ∈ {0, 1} is the target value that indicates membership.
Interpreting the formula: when the document is assigned to the class (td

k = 1), the first term
contributes log(1/y) as an error (which gets smaller the closery is to unity), and when it is
not assigned (td

k = 0); only the second term contributes log(1/(1− y)) towards the error.
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Mathematically identical, consider reversing the order of the summations. Beginning with
the first topic, all documents that contain the topics have a target value of 1, and all those
that do not contain the topics have a target value of 0. From this perspective it can be seen
that the output will give the expected value, corresponding to the probability that the topic
is present in response to a certain input. The hard constraint that the probability has to take
values in (0, 1) is automatically fulfilled if a sigmoid is taken as output activation function.
Note that this cost function is used for both the topics in the individual classifiers, and for
the meta-topics in the meta-topic classifier.

This objective function is identical to the one used in logistic regression (apart from a sign
change and sometimes a factor of two). Viewed in a maximum likelihood framework, this
objective reflects an underlying binomial distribution for the errors and allows the outputs
y to be interpreted as conditional probabilities.

Note that in practice, the user typically needs to go beyond a probabilistic assignment
and needs to make a decision, often with a very asymmetric loss function (see Section 2).
For example, missing a document in a search for prior work for a patent application is
much worse than bringing up an irrelevant document. Luckily, this does not change the
problem fundamentally—a different decision threshold is taken into account through a
linear transformation of the cost function. In the evaluation part of this paper, Section 6,
we consider several decision thresholds and average over them in order to obtain single
performance measures.

4.3.2. Architecture. We now turn to the “architecture,” i.e., the functional form of the
classifier, and show how it incorporates assumptions about the problem domain.

Figure 2 shows three examples of non-hierarchical solutions. In all cases, the information
flows from the bottom to the top, i.e., the bottom lines represent the inputs, the horizontal

Figure 2. Three flat (non-hierarchical) architectures. Architecture (a) describes the case of shared inputs and
shared hidden units, (b) of shared inputs but separate groups of hidden units for each topic, and (c) of individual
sets of inputs and hidden units for each topic. This paper uses architecture (a) for the network that predicts the
meta-topics (left part of figure 1), and architecture (c) for the networks that predict the individual topics, given the
meta-topic (right part of figure 1).
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lines in the middle represent the hidden units, and the top circles represent the outputs
(the predictions for the topics). Connections between these lines indicate the parameters or
weights that are estimated from the training set by minimizing the cost function discussed in
Section 4.3.1 above. The hidden units are given tanh activation functions (centered around
zero), and the output units are given sigmoid activation functions (Eq. (3)) that incorporate
the hard constraint for the range of a probability.

Figure 2(a) uses a common set of inputs that feed into one single set of shared hidden
units. This global re-representation of the inputs in the hidden units space is followed by
individual logit models on the hidden units.

Figure 2(b) still uses one common set of inputs. The hidden units, however, are broken
into non-interacting subsets, each corresponding to one of the output classes. Both these
architectures have the same inputs. This allows them to operate on a single set of selected
terms, or a representation such as LSI (Latent Semantic Indexing), discussed in Section 4.4.

In contrast, figure 2(c) gives each classifier a different set of inputs, chosen to be parti-
cularly useful for that specific class. The overall architecture in (c) is a parallel estimation
of all the probabilities—there is no (positive or negative) interaction between the classes.
Note that this complete independence allows the easy addition of new classes, since each
network is trained separately. Furthermore, the size of the weights between inputs and
hidden units in each network indicates the importance of individual terms for the individual
tasks. Since sharing hidden units does not make sense in this case, there are no further
possibilities for nonhierarchical architectures.

We use both architectures (a) and (c) as “flat” baseline models in this article, enabling
us to gauge the relative performance of our hierarchical models for both shared and class-
specific representations. We do not use architecture (b) since, as noted above, nonlinearity
does not appear to play a major role in this problem. Previous work (Wiener 1995) has
shown that architecture (c) performs best on the Reuters data but that architecture (a) is
adequate for the coarse-grained distinctions exemplified by the high-frequency topic labels.

The hierarchical architecture we propose in this article is shown in figure 1. Within each
group, the sub-models correspond to figure 2(c), i.e., individual networks with relevant
terms selected for each individual prediction task. The important difference is the “group
network” on the left. It has a single shared set of inputs, a set of shared hidden units, and
one output for eachmeta-topic, such asAGRICULTURE andENERGY. In summary, we use
architecture (a) for the meta-topic, and architecture (c) for the individual topics.

We train the networks using a fully supervised approach: Every document has explicit
targets for the meta-topics and for the individual topics. As discussed above, each topic
had been manually assigned to exactly one meta-topic. This allows for completely separate
training of all networks, using cross-entropy errors on all levels.

4.4. Document Representation

To build the classifier, we still need to address the question of how to represent the text,
i.e., how do we show each document to the classifier? The total number of terms (order of
50,000, the exact value depending on preprocessing such as stemming and truncation) is too
large as input space: in such high-dimensional spaces almost all points (i.e., documents)
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are very far apart, making generalization from the training set to the test set very difficult
(“curse of dimensionality”). The dimensionality of the large space needs to be reduced for
the input into the classifier.

We use two statistical techniques to reduce the number of inputs. The first projects the full
term vector linearly onto a hyperplane and only retains the coordinates along that hyperlane.
The hyperplane is chosen such that the sum of the squared distances between the original
points and their projections is as small as possible. This standard technique, known in
statistics and engineering as principal component analysis, as singular value decomposition,
and as Karhunen-Lo´eve transformation, is called in the information retrieval fieldLatent
Semantic Indexing(LSI) (Deerwester et al. 1990). It works well to the degree that most of
the “signal” can indeed be captured by a hyperplane of about 1 percent of the total number of
dimensions, and that the remaining 99 percent of the dimensions mainly capture the “noise.”

Within this first technique, the remaining decision is whether to use all of the documents of
the corpus (“global”), or only a specific subset (“local”). We use LSI for both. In the global
case, the input into the first classifier (which predicts meta-topics) is determined by applying
LSI on the document-term matrix of the entire corpus. In the local case, the inputs into
the other classifiers (which predict the individual topics given the meta-topic) are obtained
by applying LSI on the document-term matrix that contains only the documents in a topic
group. This local representation for each topic group (meta-topic) varies across groups.

While LSI captures as much variance as possible for any given number of retained
variables, its dimensions are typically linear superpositions of the original terms. This
problem is addressed in the second technique we use. The goal of term selection is to
choose a small subset of highly discriminating terms from the full set of terms and use
these terms as input dimensions. More specifically, we use the chi-squared statistic to
estimate the predictive power of the terms with respect to topics, and then select the highest
ranked terms. The chi-squared statistic measures the discrepancy between the observed
counts in a contingency table of topic-term co-occurrence, and the expected counts under
the assumption that the terms are distributed uniformly in all of the documents:

χ2 =
∑

all cells

(observed− expected)2

expected

Details and interpretation of the chi-squared measure are given, for example, in Collett
(1991).

We use the chi-squared term selection approach for the networks that predict the individual
topics. We compute a separate input representation for each topic based upon analyzing
the predictive power of each term with respect to the particular topic. These separate
representations allow us to keep the number of inputs for each of these networks small.

When determining the chi-squared values for a given topic, the remaining choice is
whether to compute the expected values from the entire corpus, or from the meta-topic
under which the topic under consideration falls. For example, to select a local set of terms
for predicting the topiccrude, the selection technique can either analyze topic-term co-
occurrence over the entire training set or over just the documents in theENERGYmeta-topic.
The difference is best illustrated by comparing the top fifty terms selected forcrude using
the chi-squared measure on the full training set versus just on theENERGY set. Using the
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entire corpus, we obtain the following predictors:

barrel oil crude bpd opec petroleum
energy exploration refinery bbl gas
distillate gasoline sea drill production
saudi offshore day iraq api kuwait arabia
ecuador tanker petroleos wti exxon cubic
iranian earthquake gulf iran natural
pipeline texaco grisanti hernandez xon
shell crudes field venezuela petrobras
al escort herrington output sour iraqi

If we do not use the entire corpus, but only on the documents in theENERGYset, the best
predictors are:

oil crude harbor file gallon octane
pound barrel resin unlead bpd
petrochemical last thermoplastic butane
midland barge fall customer effective
opec houston super pel beaumont
ethylene polypropylene widely propane
dow modernization component adhesive
jet cgp pittsburgh convert heat diesel
petrol regular tonne day co sulphur
cts he subsidiary corp cent

Note, for example, that the termspetroleum andenergy are considered good predictors
for crude in the full training set, but are not considered good predictors within the context
of ENERGY documents. Overall, local representations tend to give better performance in
the hierarchical network because they pick out the relevant discriminating features.4 This
is why we use the highest ranked terms for a given topic from the given local comparison
with the meta-topic only, and not with the entire corpus.

5. Results

5.1. Evaluation Measures

To present a single number evaluation of a classifier for a particular topic, one summarizes
effectiveness over a range of potential decision thresholds. We do this by computingPavg,
the average precision over a fixed set of evenly spaced recall levels. For a given topic, one
can rank test documents by the predicted probability that they belong to that topic. The true
topic assignments for test documents are known. Two numbers can be computed for any cut
point. The first number,precision, is given by the following ratio: the number of documents
that are correctly assigned to the topic divided by the number of documents retrieved. The
second number,recall, is given by the following ratio: the number of documents that are
correctly assigned to the topic divided by the total number of documents that have that topic.
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To achieve one single number for one topic from the entire precision recall curve, it is
customary to average precision over a number of recall points. All the numbers reported
here are the arithmetic mean of the precision values at eleven evenly spaced recall points
of 0%, 10%, 20%, . . . ,90%, 100%. If no exact cutoffs were available, we used linear
interpolation to obtain an approximate value. In this computation, the specific decision
threshold to achieve a particular recall point can vary by topic. We only report this measure
here, it is highly correlated (order of 0.95) with other evaluation measures, such as the so-
calledF-measure (van Rijsbergen 1979). A detailed discussion of measures for evaluation
is given in Yang (1999), and the exhaustive compilation of our experimental results using
a variety of evaluation measures is given in Wiener (1995).

The Pavg measure characterizes the average performance for each topic. If we want to
summarize the performance over a whole set of topics, two ways of averaging are used in the
literature: The effectiveness can be computed for each topic separately and then averaged
over the topics, or the topic decisions can be computed for each document and then averaged
across documents. The following two terms are used to describe these situations:

• Macroaveragingtakes the expectation where the topics are given even weight. A topic
that only appears a couple of times in the test set influences the results as much as a topic
that appear thousands of times as often.
• Microaveragingtakes the expectation where the documents are given even weight. The

resulting value is dominated by the frequent topics, since they appear much more often
than the rare ones.

Microaveraging essentially measures performance for the easy-to-predict high-frequency
topics. This is also a main reason of the similarity between the microaveraged results of
most text categorizations methods on the Reuters data. In comparison, macroaveraging em-
phasizes the medium and low frequency topics. This is harder but bears more information.
This paper thus focuses on macroaveraged results.

Some systems report performance only using microaveraging. Lewis (1992) uses pro-
portional assignment rather than fixed recall points for finding decision thresholds. When
necessary for a clear comparison, we also microaverage.

5.2. Baseline Performance

The first step in our empirical evaluation establishes baseline figures for non-hierarchical,
flat models. We show that the results of our baseline model compare favorably with those
of previously published results for the same corpus, as well as with standard alternative text
categorization models.

5.2.1. Baseline Model. For the flat network, we used architecture (c) from figure 2, where
a separate classifier was trained for each topic. We tried both a global LSI representation
(retaining 200 dimensions) and global selected term representations (using the top 20 terms
for each topic). Each of the networks had six hidden units.
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5.2.2. Comparison to Published Results.Our experimental setting is most similar to the
one used by Apte et al. (1994), hence we can directly compare results. While there is
a difference in the training/test split of the Reuters data, Yang (1999) provides evidence
that this difference in splitting the data has no major effect on the performance. The best
experiment reported by Apte et al. (1994) (excluding experiments with extra weight given
to headline terms) microaveraged over all 92 topics and resulted in a breakeven point of
.789.5 The breakeven points for our flat models, microaveraged over the same 92 topics,
are .801 for the LSI network and .775 for the selected term network. This, combined with
the careful cross-system comparison given in Yang (1999), suggests that our flat models
are competitive with the best results reported for text categorization over the Reuters data.

5.2.3. Comparison to Other Methods.To establish the baseline performance further, we
also compared it to two other standard categorization methods on the same data:k-nearest
neighbors (Masand et al. 1992) and prototype-based classification (Hull 1994, Ittner et al.
1995). For these experiments, we macroaveraged over the top 58 most frequent topics.
This attempts a compromise between too much emphasis on the high-frequency topics (as
micro-averaging would have done) and too much variance from the low-frequency topics
(below 16 occurrences in the training set).

The best results we achieved fork-nearest neighbors were 0.644 average precision using
LSI and 0.756 average precision using selected terms, compared with 0.765 for the network
using LSI and 0.771 using selected terms.

We also established a benchmark performance for a prototype-based approach. Using the
Buckley et al. (1994) variant of the Rocchio (1971) algorithm, we first built a prototype for
each topic, and subsequently assigned topic scores based on the cosines between documents
and prototypes. The best results we achieved were 0.637 average precision for an LSI
representation and 0.678 average precision for a term representation, which is below the
0.765 for the LSI and the and 0.771 for the selected term networks, reported above.

These results show that our baseline models are at least competitive with other standard
text categorization techniques.

5.3. Hierarchical Performance

For our experiments with the hierarchical model, we decided to exclude the umbrella meta-
topic that we had calledGOVERNMENT. As can be seen from the detailed list in the Appendix,
this meta-topic had little semantic coherence (ranging fromt-bond and housing to ship) and
would have watered down the results since its breadth is similar to the non-hierarchical case.
Applying this cut along with the requirement to have at least 16 positive examples in the
training set leaves the final set of 37 topics for the experiments. This set is used throughout
the experiments reported here. On this set, we used topic-specific term selection for the
topic networks, trying both local and global chi-squared selection (retaining the top 20 terms
as inputs). We also tried both local and global LSI representations for the topic networks,
in each case using the first 200 dimensions as inputs. For the meta-topic network, we used
a global LSI representation, retaining the first 200 dimensions as inputs into the network.
In all networks, we used six hidden units, as in the baseline case.
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Table 1. MacroaveragedPavg for hierarchical and flat comparison models over 37 topics. The column labeled
‘All’ gives the performance over all 37 topics. The remaining three columns indicated the performances for top
1/3 by frequency≥76 examples in the training set, the middle third (between 36 and 75 examples in the training
set), and the bottom 1/3 (between 16 and 35 examples in the training set).

Model All High Medium Low

H-GlobalTerm 0.852 0.893 0.833 0.845

H-LocalTerm 0.849 0.892 0.815 0.852

H-GlobalLSI 0.742 0.847 0.782 0.659

H-LocalLSI 0.831 0.875 0.796 0.835

F-GlobalTerm 0.811 0.875 0.787 0.798

F-GlobalLSI 0.764 0.864 0.811 0.678

Table 1 shows precision macroaveraged over four topic frequency ranges: all topics, the
most frequent third, the middle, and the lowest frequent third of the 37 topics. (The exact
cut-offs are described in the caption.) The following six model classes are compared:

• H-GlobalTerm: a hierarchical model using global topic-specific term selection for the
topic models;
• H-LocalTerm: a hierarchical model using local topic-specific term selection for the topic

models;
• H-GlobalLSI: a hierarchical model using global LSI representation for the topic models;
• H-LocalLSI: hierarchical model using a local LSI representation for the topic models;
• F-GlobalTerm: a flat model using global topic-specific term selection;
• F-GlobalLSI: a flat model using global LSI representation.

The performance of the last two entries, the flat baseline networks, is computed on the same
37 topics and subgroups as used in the hierarchical networks. For those two entries we only
use global methods (both term selection and LSI) since the networks are trained on the full
corpus. Note the improvement in performance of the hierarchical models compared to the
flat models, and of the local representations compared to the global representations.

Table 2 tests for the significance of the differences between models by using a paired
t-test on the average precision values across the individual topics (Hull 1993).

Table 2. Percentage difference inPavg for hierarchical models compared to relevant baselines. Figures in bold
were found to be statistically significant using a pairedt-test at level .05.

Comparison All High Medium Low

Hierarchical vs. hierarchical

H-LocalLSI vs. H-GlobalLSI 9.4 1.7 1.0 21.8

H-LocalTerm vs. H-GlobalTerm −0.4 −0.1 −2.2 0.8

Hierarchical vs. flat

H-GlobalTerm vs. F-GlobalTerm 5.0 2.1 5.9 6.0

H-GlobalLSI vs. F-GlobalLSI −2.9 −2.0 −4.5 −2.1
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Figure 3. Macroaveraged precision of the hierarchical network compared to the flat network, both using global
term representations.

The full precision-recall curves for the hierarchical network in comparison to the flat
networks using global term selection are shown in figure 3.

6. Analysis

The main result of all our experiments is that the best performance is obtained by the
hierarchical network that uses globalterm selection. The improvement in performance
over a flat network is especially noticeable for lower-frequency topics. Furthermore, the
hierarchical network with a globalLSI representation for the topic classifiers performs
relatively poorly—significantly worse than a flat network with a global LSI representation.
This suggests that global LSI is not a good representation for the topic classifiers of a
hierarchical model. However, the local LSI representation performs almost as well as the
selected term representation for the hierarchical model.

The performances of the hierarchical model with local and with global selected term
representations are not significantly different. Thus, we can attribute all of the improvement
over the flat model to the hierarchical model itself rather than to the representation.
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Figure 4. Comparison of output distributions for hierarchical and flat networks.

To better understand the performance difference between the hierarchical and flat models,
figure 4 compares the output distributions for two networks predicting the topicscrude and
yenusing global term selection. Thex-axis labels output probability, and they-axis labels
frequency of occurrence of that probability for test documents which both should correctly
be assigned the topic (positivey axis) and should not be assigned the topic (negativey axis).
Note that the spread between true positive and true negatives is greater for the hierarchical
model, and hence the likelihood of misclassification is smaller than in the non-hierarchical
case.

There appear to be two reasons for the hierarchical network’s improvement over the
flat network assuming a selected term representation. First, the meta-topic network, with
its shared representation, does a good job shutting off meta-topics that have no bearing
on the document. Thus, many of the false positives generated by the flat model are not
generated by the hierarchical model. For example, we observed that many of theearnings
andacquisitions documents that were erroneously given high scores by the flat models,
were in contrast shut off by the meta-topic component of the hierarchical model.
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Table 3. Comparison of weights in a linear flat network and linear hierarchical network predicting the topic
natural gas. The first 16 terms are listed in the order selected by the chi-squared measure.

Term Hierarchical Flat

gas .829 .491

oil −.707 −.071

natural .169 .133

cubic .223 .237

barrel −.183 −.022

foot .143 .054

reserve .244 .120

production .227 .214

energy .055 .186

price .441 .525

exploration .184 .254

well −.157 −.026

petroleum .049 .156

drill .087 .112

say .043 .109

pipeline .094 .132

Second, models trained locally can be more sensitive to the subtle distinctions between
similar topics than globally trained models. As an example, consider the topicnatural gas,
for which the hierarchical model does substantially better than the flat model. Examining
the weights indicates the terms that are important for the two models. Table 3 displays
the weights for both a linear flat network and the topic component in a linear hierarchical
network, both using the same 16 selected terms.6 The most striking difference is in the
weights for the termoil. In the flat network,oil appears to be essentially ignored, while
in the hierarchical network it is a strong negative predictor. Apparently,oil is important
for discriminating between natural gas and non-natural gas documents within the region
of most difficulty, the energy documents. However, this is not picked up on by the flat
network. Sinceoil has two very different senses (petroleum vs. vegetable oil), it may be
difficult for the flat network, trained on the entire corpus, to make use ofoil as a predictor.

We found the same phenomenon in examining thecrude andyen topic networks. For
example, the termgas is picked as a good positive predictor for the topiccrude by the
global term-selection measure, but ends up with a strong negative weight in the hierarchical
network. In the flat network, on the other hand, the weight forgas is close to zero. For the
topic yen, dollar is selected as the second highest positive predictor by the chi-squared
measure, but it is given a negative weight in the hierarchical network and no weight in
the flat network. Thus, whiledollar appears to predict the topicyen, it is actually more
useful in helping to discriminateyen documents from other foreign-exchange documents.
This analysis confirms the importance of doing local modeling within the context of topic
groups.
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7. Conclusion and Outlook

Many problems in information systems and knowledge engineering have some domain
structure of hierarchical nature. Examples range from cataloging systems in traditional
libraries to hierarchical directories on the Web. Most published algorithms for text catego-
rization do not take any advantage of the inherent hierarchical structure. The task, to obtain
estimates of the probabilities of the individual categories, is very difficult to achieve for flat,
non-hierarchical architectures. On the input side, a flat architecture requires a large number
of predictors to contain sufficient information for the potentially very subtle distinctions in
between very close categories. The finer the required distinctions are, the worse the curse
of dimensionality becomes. On the output side, many categories have a very low ratio of
positive to negative examples, often only one positive for tens of thousands of negative
examples.

This paper addresses these problems by using a divide-and-conquer strategy that mimics
the hierarchical structure of knowledge that is ignored in flat inference models. On the first
(coarse) level of the hierarchy, the task is to assign the probabilities of the meta-topics to
each document. We have manually divided all topics into five meta-topics. Each meta-topic
contains a reasonable number of positive examples in comparison to the negative examples.
Since this level does not require particularly fine distinctions between individual topics,
Latent Semantic Indexing (LSI) turns out to be an appropriate input representation. We use
a 200-dimensional linear subspace of the original term space.

On the next level of the hierarchy, each model has to learn to differentiate only within the
meta-topic it belongs to, and no longer against the other meta-topics. Note that this again
avoids too small ratios of positive to negative examples in training. For the inputs of these
sub-models, we compared several choices for the inputs, consisting of individual terms as
well as of LSI. In both cases, we computed the optimal sets both on a group basis (where
every sub-model had the same set of inputs), as well as individual sets for each subset or
category.

The improvement is robust: Differences between these 2×2 choices were small compared
to the gain obtained through the hierarchical approach in comparison to a non-hierarchical
approach. We presented a statistically significant overall improvement of five percent for
averaged precision. The strongest gains are on rare categories that otherwise suffer from
the lack of relevant inputs and a too small ratio of positive to negative examples. Beside the
performance improvements, we gave several insights into the specific solutions the network
has found.

This paper used a hierarchy of two levels. The extension to more than two levels is
straightforward and can be carried out recursively. From a practical perspective, this makes
sense as long as a sufficient number of positive training example per category is available.
For the Reuters corpus, two levels were appropriate. For most Web search catalogues or
directories, deeper hierarchies can (and should) be used. The main result of this paper is
that a hierarchical structure helps to improve predictions for rare classes. Furthermore, the
different parts of the hierarchical architecture can be trained independently. This solves
the otherwise very serious problem of scaling up to very large and heterogeneous text
collections such as the Web.
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The approach presented here is based on a solid statistical framework that allows the
interpretation of the results as probabilities. This is important since it allows the combination
of topic predictions from our model in a principled way with information from other models.

Appendix: The Topics and Their Hierarchy

The Appendix presents all of the topics with additional information in form of a table.

Table 4. The topics are sorted in decreasing frequency on the training set. The columns are: topic rank, topic
name, number of documents in the training set, number of documents in the test set, percentage of documents
that have at least one additional topic assigned (“%>1”), first letter of topic group. The last five columns give the
corresponding meta-topics of additionally assigned topics, when present.

Rank Topic Train Test %>1 Group %A %E %F %G %M

1 earn 2878 1170 2 G 0 27 0 69 11

2 acq 1650 774 4 G 10 26 1 53 16

3 cbond 954 169 24 G 0 0 1 98 1

4 money-fx 541 206 59 F 0 0 50 56 0

5 grain 434 169 91 A 95 1 1 11 1

6 corp-news 420 95 36 G 2 6 0 83 11

7 loan 392 117 18 G 14 12 17 69 3

8 crude 388 196 38 E 2 47 1 63 2

9 trade 369 135 35 G 23 5 24 58 6

10 interest 346 148 56 G 0 0 71 36 0

11 wheat 212 82 100 A 100 1 0 5 1

12 ship 198 92 50 G 34 56 0 8 3

13 corn 177 64 100 A 100 0 0 5 1

14 ebond 173 55 71 G 0 0 1 100 0

15 money-supply 140 37 15 G 0 0 37 81 0

16 dlr 131 54 96 F 1 1 98 14 0

17 sugar 126 43 25 A 69 7 0 38 7

18 oilseed 123 54 94 A 99 1 0 10 0

19 gbond 115 23 20 G 4 0 11 75 18

20 coffee 113 32 21 A 60 13 0 53 10

21 tbill 109 17 24 G 0 0 23 83 0

22 gnp 103 37 46 G 6 2 20 91 0

23 gold 94 33 35 M 2 0 9 44 60

24 veg-oil 87 40 76 A 97 2 0 11 2

25 soybean 79 38 100 A 100 0 0 7 0

26 nat-gas 75 33 70 E 1 91 0 33 1

(Continued on next page.)
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Table 4. (Continued).

Rank Topic Train Test %>1 Group %A %E %F %G %M

27 livestock 75 30 77 A 98 0 1 12 1

28 bop 75 33 71 G 3 1 9 100 0

29 cpi 69 30 27 G 4 7 19 93 0

30 cocoa 56 19 16 A 83 8 0 25 8

31 reserves 55 19 32 F 4 0 42 58 8

32 carcass 50 20 84 A 98 0 0 15 0

33 copper 47 20 40 M 7 0 0 41 52

34 jobs 46 23 26 G 0 0 6 100 0

35 yen 45 24 84 F 0 0 100 16 0

36 tbond 42 7 35 G 0 6 29 100 0

37 ipi 42 12 17 G 11 0 0 100 0

38 iron-steel 40 17 35 M 20 25 0 90 10

39 cotton 39 24 59 A 97 3 3 16 8

40 rubber 37 15 21 A 82 9 0 36 18

41 gas 37 19 70 E 3 85 0 15 5

42 barley 36 16 100 A 100 0 0 4 0

43 rice 35 28 98 A 100 0 0 10 2

44 alum 35 24 19 M 9 0 0 73 36

45 palm-oil 30 12 100 A 100 5 0 14 5

46 meal-feed 30 20 74 A 100 0 0 3 0

47 fbond 27 3 13 G 0 0 25 100 0

48 sorghum 23 13 100 A 100 0 0 0 0

49 retail 23 2 20 G 0 0 0 100 0

50 zinc 21 15 56 M 0 0 0 10 100

51 silver 21 8 86 M 4 0 4 20 96

52 pet-chem 20 13 42 E 14 50 0 57 0

53 wpi 19 10 21 G 0 33 0 67 0

54 tin 18 16 12 M 75 0 0 50 25

55 stg 18 0 94 F 0 0 94 35 0

56 strategic-metal 17 11 46 M 0 0 0 38 69

57 rapeseed 17 8 100 A 100 0 0 8 0

58 orange 16 11 19 A 100 0 0 20 0

59 housing 16 4 15 G 0 0 0 100 0

60 hog 16 7 96 A 95 0 0 14 0

61 lead 15 15 77 M 0 9 0 26 74

62 heat 14 7 52 E 9 82 0 27 0

63 soy-oil 13 13 100 A 100 0 0 4 0

(Continued on next page.)
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Table 4. (Continued).

Rank Topic Train Test %>1 Group %A %E %F %G %M

64 fuel 13 11 54 E 0 92 0 15 0

65 lei 12 3 7 G 0 0 0 100 0

66 sunseed 11 6 100 A 100 0 0 6 0

67 soy-meal 11 11 100 A 100 0 0 0 0

68 dmk 10 4 100 F 0 0 100 14 0

69 tea 9 4 62 A 100 25 0 38 25

70 income 9 8 35 G 0 0 33 100 0

71 nickel 8 2 50 M 0 0 0 20 100

72 lumber 8 7 27 A 50 0 0 50 0

73 oat 7 6 100 A 100 0 0 0 0

74 l-cattle 6 3 89 A 100 0 0 0 0

75 sun-oil 5 2 100 A 100 0 0 0 0

76 rape-oil 5 4 100 A 100 0 0 11 0

77 platinum 5 8 69 M 0 0 0 11 100

78 inventories 5 0 40 G 0 0 0 100 0

79 instal-debt 5 1 0 G 0 0 0 0 0

80 groundnut 5 6 82 A 100 0 0 11 0

81 oil 4 1 100 E 40 40 0 20 0

82 jet 4 1 40 E 0 100 0 0 0

83 coconut-oil 4 3 100 A 100 0 0 14 0

84 coconut 4 2 83 A 100 0 0 0 0

85 austdlr 4 0 100 F 0 0 75 75 0

86 propane 3 3 83 E 0 80 0 40 0

87 potato 3 4 14 A 100 0 0 0 0

88 can 3 1 75 F 0 0 100 0 0

89 wool 2 0 50 A 100 0 100 100 0

90 saudiriyal 2 1 100 F 0 0 67 33 0

91 palmkernel 2 1 100 A 100 0 0 0 0

92 naphtha 2 4 83 E 20 80 0 20 20
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Notes

1. The Reuters-22173 collection has been replaced since our experiments by the Reuters-21578 collection, which
represents a cleaner, better documented subset of the same underlying data. The Reuters-21578 collection is
maintained by David D. Lewis at www.research.att.com/∼lewis/reuters21578.html

2. While we manually picked these groups in order to focus on the effect of a grouping onto the task of text
categorization, is also possible tolearn a hierarchical structure. Pereira et al. (1993) use an annealing
approach to clustering proposed by Rose et al. (1990) for this task. Hofmann (1998) shows that a hierarchical
mixture model can be used for clustering of documents. Note, however, that we are interested in supervised
learning, since we start with a collection of documents where topic classes are provided and already assigned.
This allows for rigid evaluation of the performance which is by nature not possible in unsupervised learning
(here in the form of clustering and of competitive learning). Furthermore, many documents are not solely
about a single topic but tend to be assigned more than one topic. This is in contrast to the assumption made in
the data generating process for clustering where each observed vector is assumed to have been generated by
exactly one hidden group. An interesting area of research is the development of statistically principled methods
that allow for overlapping groups and combine the supervised part (topics given) with an unsupervised part
(groupings to be learned).

3. The comparison to logistic regression (i.e., no hidden units) is a healthy check: many standard statistical
packages have good routines for logistic regression. The neural network without hidden units should lead that
same results as logistic regression. When hidden units are subsequently introduced, the amount of improvement
over simple logistic regression indicates the importance of the potential nonlinear structure in the data. Our
experiments on the Reuters topic spotting data do not show significant improvement with hidden units over
direct connections. We suspect that two factors make it difficult to find nonlinearities: (1) the simple heuristic
of “early stopping” has a bias towards linear models (LeBaron and Weigend 1998), (2) the high noise in the
data masks potentially more subtle nonlinearities. To focus this article on the issue of hierarchy, we use hidden
units in the neural networks throughout this paper and eliminate the extra dimension of nonlinear vs. linear
logistic regression. The detailed comparison between linear and nonlinear performances is given in (Wiener
1995).

4. It might be interesting to compare our two sets of terms for the topiccrude with the top ten terms given by
Koller and Sahami (1997) (“KS”). Using the chi-squared measure based on the entire corpus, the top 50 terms
include eight of the ten KS terms (missingship andattack). In contrast, when computing the chi-squared
measure based on theENERGYset, the top 50 terms include only a single KS term (barrel). This indicates that
KS’s term selection method does not exploit the local structure to the same degree as the chi-squared approach
on theENERGYset does.

5. We thank one of the referees for pointing out that these results have recently been improved. The best published
results on the Apte et al. (1994) are now 0.85 usingk-nearest neighbors (Yang 1999). This can be interpreted
as a further validation of the range of the baseline results.

6. Since we found little difference in the performance of linear and nonlinear networks, we use a linear network
for analysis here in order to be able to more easily analyze the network weights. We could have also used
sensitivity analysis to discover the important inputs in the nonlinear networks.
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